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Schrödinger Bridges - background & classical concepts

• Entropy & Relative entropy

manifestations
• Schrödinger’s Bridge problem

static & dynamic
Markov chains, diffusion processes

• Fortet-Sinkhorn algorithm

Hilbert metric
• Stochastic control & steering

• A bit on quantum
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Relative Entropy
Kullback-Leibler divergence

P ,Q probability laws on any measurable space X (dQ � dP),

D(PkQ) :=

Z

X
dP log

✓
dP

dQ

◆

= EQ {⇤ log (⇤)} , where ⇤ =
dP

dQ

If dQ 6� dP , then D(PkQ) :=1

D(PkQ) jointly convex, and � 0 always

4 / 69



Relative Entropy
origins

• degradation of coding efficiency:

word-length increase on average when using the wrong code

Average word-length (optimal code) = �
P

k
pk log(pk), i.e., entropy rate

Average word-length using code designed for ⇠ qk , �
P

k
pk log(qk)

Degradation:
�
X

k

pk log(qk)

| {z }
suboptimal

� (�
X

k

pk log(pk))

| {z }
optimal

= D(PkQ)
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Relative Entropy
• quantifying likelihood of rare events:

the probability that an empirical average is far away from its mean

Sanov’s theorem:

Independent samples Xt (t 2 {1, . . . ,N}), distributed Xt ⇠ Q

Empirical distribution PN (random histogram)
PN(A) =

1
N

P
N

t=1 1Xt2A

Suppose P is a convex set of distributions,
and P

? = argminP2P D(PkQ)

P {PN 2 P} ' e
�N·D(P?kQ)

P
? representative of PN in “neighborhood” P 6 / 69



Relative Entropy

• likelihood estimation:

most likely law consistent with statistics/moments

example: Assuming, e.g., X 2 {0, . . . , n} is distributed X ⇠ Q (prior)

and given estimated statistics/moments, e.g., x̄ = 1
N

P
N

k=1 Xt

what can we say about the distribution of the N-samples?

The most likely (posterior) is:

P
⇤ = arg minP

n

k=0 kPk=x̄

D(PkQ)

i.e., the closest to the prior that is consistent with the data
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Relative Entropy

• Reconcile statistical data

origin in statistics, contigency tables

Example:

X ,Y jointly distributed on {0, 1, . . . , n}, with prior Q(x , y),
and given (empirical) marginals pX (x), pY (y),
find a most likely posterior P

?(x , y) in agreement with pX , pY .

P
? = argmin

P

(
D(PkQ) |

X

x

P(x , y) = pY (y),
X

y

P(x , y) = pX (x)

)
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Form of solution - diagonal scaling1

P
? = argminP

n
D(PkQ) |

P
x
P(x , y) = pY (y),

P
y
P(x , y) = pX (x)

o

L(P, a, b) :=
X

x

X

y

P(x , y) log

✓
P(x , y)
Q(x , y)

◆

+
X

x

a(x)(
X

y

P(x , y)� pX (x))

+
X

y

b(y)(
X

x

P(x , y)� pY (y))

@
@P(x ,y)L = 0 ) log

⇣
P(x ,y)
Q(x ,y)

⌘
= �1 + a(x) + b(y)

P
?(x , y) = e

�1+a(x)
Q(x , y)eb(y)

1Sinkhorn-Knopp, Marshall & Olkin, and earlier Schrödinger, Fortet
9 / 69



Fortet-Sinkhorn’s algorithm

P
?(x , y) = e

�1+a(x)
Q(x , y)eb(y) = Dleft(x)Q(x , y)Dright(y)

Algorithm: Given matrix Q, and vectors pX , pY

Start with P = Q = [Q(x , y)]n
x,y=1

P ! D`P where D` diagonal, D`(x) =
pX (x)P
y
P(x,y) s.t.

P
y
D`(y)P(x , y) = pX (x)

P ! PDr where Dr diagonal, Dr (y) =
pY (y)P
x
P(x,y) s.t.

P
x
P(x , y)Dr (y) = pY (y)

repeat until convergence

If Q(x , y) > 0 for all x , y convergence is guaranteed.

Applies to multi-marginals and higher-dimensional arrays Q(x , y , z , . . .), etc.
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Schrödinger’s bridge problem
for Markov chains

Markov chain Xt 2 {0, . . . , n}
Prior law: X0 ⇠ q0, transition probabilities ⇧0(x0, x1), ⇧1(x1, x2), . . . ,⇧T�1(xT�1, xT ).
Data: empirical marginals X0 ⇠ p0, XT ⇠ pT when q0 6= p0 and/or qT 6= pT

Find the most likely evolution

Path probability/measure:

Prior path probability Q(x0, . . . , xT ) = q0(x0)⇧0(x0, x1) · · ·⇧T�1(xT�1, xT )
Posterior path probability P(x0, . . . , xT ) = p0(x0)⇧̂0(x0, x1) · · · ⇧̂T�1(xT�1, xT )

Find: transition probabilities

P
? = argmin

(
D(PkQ) |

X

x1,...,xT

P(x1, . . . , xT ) = p0(x0),

X

x0...,xT�1

P(x0, . . . , xT�1) = pT (xT ).

9
=

;
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P
? = argmin{D(PkQ) | P 2 P(p0, pT )}

Disintegration: Q with respect to the initial and final positions,

Q(x0, x1, . . . , xT ) = Qx0,xT (x1, . . . , xT�1)| {z }
pinned bridge

q0T (x0, xT )

where Qx0,xT (·) = Q { · |X (0) = x0,X (T ) = xT}; similarly for P

D(PkQ) =
X

x0xT

p0T (x0, xT ) log
p0T (x0, xT )

q0T (x0, xT )
| {z }

�0

+
X

x

Px0,xT (x...) log
Px0,xT (x...)

Qx0,xT (x...)
q0T (x0, xT )

| {z }
�0

) 2nd term = 0 when P , Q share pinned bridges
) need to minimize the coupling p0T subject to marginals
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P
? = argmin{D(PkQ) | P 2 P(p0, pT )}

For T = 1

⇧̂⇤ = argmin{
X

x0x1

p01(x0, x1) log
p01(x0, x1)

q01(x0, x1)
}

p01(x0, x1) = p(x0)⇧̂(x0, x1), q01(x0, x1) = q(x0)⇧(x0, x1),

D(p0(·)⇧̂(·, ·)kq0(·)⇧(·, ·)) =
X

x0,x1

p(x0)⇧̂(x0, x1)

 
log(

p(x0)

q(x0)
) + log(

⇧̂(x0, x1)

⇧(x0, x1)
)

!

transition probability:
P

x1
⇧̂(x0, x1) = 1
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P
? = argmin{D(PkQ) | P 2 P(p0, pT )}

⇧̂⇤ = argmin

(
X

x0,x1

p(x0)⇧̂(x0, x1) log(
⇧̂(x0, x1)

⇧(x0, x1)
) |
X

x0

p0(x0)⇧̂(x0, x1) = p1(x1)

X

x1

⇧̂(x0, x1) = 1

)

)

⇧̂?(x0, x1) = left(x0)⇧(x0, x1)right(x1)

= �0(x0)
�1⇧(x0, x1)�1(x1)
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A brief interlude on the Hilbert metric
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The Hilbert projective metric

Pappus of Alexandria - cross ratio

Convex bounded ⌦ ⇢ Rn

For B,C 2 ⌦ and A,D points of intersect of AB line with boundary of ⌦

dH(A,B) := log

✓
|BA| · |CD|
|BD| · |CA|

◆
.
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The Hilbert projective metric

Convex cone K ⇢ Banach space

• Pointed: K \ (�K) = {0}
• Partial order p � q , p � q 2 K

�̄(p, q) := inf{� | p  �q}
�(p, q) := sup{� | �q  p}

dH(p, q) := log
�̄(p, q)
�(p, q)

Examples:

positive cone in R
positive definite Hermitian matrices

Hilbert 1895
Birkhoff 1957
Bushell 1973
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The Hilbert projective metric

Projective diameter: diam(range(⇧)) := sup {dH(⇧(x),⇧(y)) | x , y 2 K\{0}}
Contraction ratio: k⇧kH = inf {� | dH(⇧(x),⇧(y))  �dH(x , y), x , y 2 K\{0}}

Birkhoff-Bushell theorem

⇧ positive, monotone, homogeneous of degree m, i.e., ⇧ : K ! K , cone in Rn

x  y ) ⇧(x)  ⇧(y)

⇧(↵x) = ↵m⇧(x)

Then k⇧kH  m, and if, in addition, ⇧ is linear:

k⇧kH = tanh(
1
4
diam(⇧))

Corollary: If linear ⇧ : K ! interior(K ), then k⇧kH < 1
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Bridge for one-step Markov Chain
⇧x0,xT =

P
x 6=x0,xT

⇧x0,x1⇧x1,x2 . . .⇧xT�1,xT

Start with a stochastic matrix (row sum = 1):

⇧ = [⇧x0,xT ]
N

x0,xT=1 , with positive entries

& two probability vectors p0, pN with strictly positive entries

Schrödinger system

There exist �(0, x0), �(T , xT ), �̂(0, x0), �̂(T , xT ), x0, xT 2 {1, . . . ,N} such that:

�(0, x0) =
X

xT

⇧x0,xT�(T , xT )

�̂(T , xT ) =
X

x0

⇧x0,xT �̂(0, x0)

�(0, x0)�̂(0, x0) = p0(x0)

�(T , xT )�̂(T , xT ) = pT (xT )
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Bridge for one-step Markov Chain
Circular composition of maps:

�̂(0, x0)
⇧T

�! �̂(T , xT ) =
P

x0
⇧x0,xT �̂(0, x0)

�̂(0, x0) =
p0(x0)
�(0,x0)

" # �(T , xT ) =
pT (xT )

�̂(T ,xT )

P
xN

⇧x0,xN�(T , xT ) = �(0, x0)
⇧ � �(T , xT )

The composition

�̂(0, x0)
⇧T

�! �̂(T , xT )
DT�! �(T , xT )

⇧�! �(0, x0)
D0�!

⇣
�̂(0, x0)

⌘

next

is contractive in the Hilbert metric

D0 : �(0, x0) 7! �̂(0, x0) =
p0(x0)
�(0, x0)

and DT : �̂(T , xT ) 7! �(T , xT ) =
pT (xN)

�̂(T , xT )
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Bridge for one-step Markov Chain

• the ranges of ⇧T ,⇧ are strictly in the interior of the cone,

k⇧kH , k⇧TkH < 1.

• D0 and DT inversion/element-wise scaling are isometries in the Hilbert metric

... a bit more, since Hilbert is a projective metric

The Schrödinger system has a solution (unique up to scaling)
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inversion/element-wise scaling = isometries

dH([xi ], [yi ]) = log

✓
(max

i

(xi/yi ))
1

mini (xi/yi )

◆

= log

✓
1

mini ((xi )�1/(yi )�1)
max

i

((xi )
�1/(yi )

�1)

◆

= dH([(xi )
�1], [(yi )

�1])

dH([pixi ], [piyi ]) = log
maxi ((pixi )/(piyi ))
mini ((pixi )/(piyi ))

= log
maxi (xi/yi )
mini (xi/yi )

= dH([xi ], [yi ]).

22 / 69



P
? = argmin{D(PkQ) | P 2 P(p0, pT )}

⇧̂⇤ = argmin

(
X

x0,x1

p(x0)⇧̂(x0, xT ) log(
⇧̂(x0, xT )

⇧(x0, xT )
) |
X

x0

p0(x0)⇧̂(x0, xT ) = pT (xT )

X

x1

⇧̂(x0, xT ) = 1

)

)

⇧̂?(x0, xT ) = left(x0)⇧(x0, xT )right(xT )
= �0(x0)

�1⇧(x0, xT )�T (xT )
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Schrödinger’s bridge
for Markov chains

Markov chain Xt 2 {0, . . . , n}
Prior law: X0 ⇠ q0, transition probabilities ⇧0(x0, x1), ⇧1(x1, x2), . . . ,⇧T�1(xT�1, xT ).
Data: empirical marginals X0 ⇠ p0, XT ⇠ pT when q0 6= p0 and/or qT 6= pT

Find the most likely evolution

Prior path probability Q(x0, . . . , xT ) = q0(x0)⇧0(x0, x1) · · ·⇧T�1(xT�1, xT )
Posterior path probability P

?(x0, . . . , xT ) = p0(x0)⇧̂0(x0, x1) · · · ⇧̂T�1(xT�1, xT )

P
?(x0, . . . , xT ) = p0(x0)

⇧̂0(x0,x1)z }| {�
�(0, x0)

�1⇧0(x0, x1)�(1, x1)
� �
�(1, x1)

�1⇧1(x1, x2)�(2, x2)
�
· · ·

· · ·
�
�(T � 1, xT�1)

�1⇧T�1(xT�1, xT )�(T , xT )
�
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Schrödinger Bridges in earnest

“On the reversal of the laws of nature”

Erwin Schrödinger, 1931
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Schrödinger’s bridge problem

– Consider a cloud of N independent Brownian particles (N large)
– empirical distributions ⇢0(x) and ⇢1(y) at t = 0 and t = 1
– ⇢0 and ⇢1 not compatible with transition mechanism

⇢1(y) 6=
Z 1

0
⇡(t0, x , t1, y)⇢0(x)dx ,

where

⇡(t0, y , t1, x) =
1p

(2⇡)n(t1 � t0)
e
� 1

2
kx�yk2
t1�t0 , s < t

) Particles have been transported in an unlikely way

Schrödinger (1931)

Of the many possible (unlikely) ways, which one is the most likely?
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Bridge
Probability law on paths linking two end-point marginals

27 / 69



Bridge
Probability law on paths linking two end-point marginals

Schrödinger’s problem:
• Interpolate in a way that reconciles

the two marginals with the prior law
• The new law being the most likely
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marginal distribution at t = 0
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marginal and prior law (flow of one-time densities)
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initial marginal, prior law, and end-point marginal
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Schrödinger bridge
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Föllmer (1988):

Schrödinger’s problem concerns large deviation of the empirical measure on paths
via Sanov’s theorem

Prob(empirical P|t=0 = ⇢0, Pt=1 = ⇢1) ' e
�N

R
log( dP

dW)dP

sampled from the Wiener W : “prior”

Schrödinger ’sproblem

P? = argmin
⇢Z

log

✓
dP
dW

◆
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

�
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An brief interlude on Optimal Mass Transport
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Optimal Mass Transport
Le mémoire sur les déblais et les remblais
Gaspard Monge 1781

Wasserstein metric

W2(µ, ⌫)
2 := inf

T

Z
kx � T (x)| {z }

y

k2dµ(x)

where T#µ = ⌫ µ(dx) = ⇢0dx , ⌫(dx) = ⇢1dx

. ⇢1(x) =
1

| det(T )|⇢0(T�1(x)) 31 / 69



Optimal Mass Transport

W2(µ, ⌫)
2 = inf

⇡2⇧(⇢0,⇢1)

ZZ
kx � yk2 d⇡(x , y)

⇧(µ, ⌫) : “couplings"
R
y
⇡(dx , dy) = ⇢0(x)dx = dµ(x)R

x
⇡(dx , dy) = ⇢1(y)dy = d⌫(y)
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Optimal Mass Transport

W2(µ, ⌫)
2 = inf

⇡2⇧(⇢0,⇢1)

ZZ
kx � yk2 d⇡(x , y)

⇧(µ, ⌫) : “couplings"
R
y
⇡(dx , dy) = ⇢0(x)dx = dµ(x)R

x
⇡(dx , dy) = ⇢1(y)dy = d⌫(y)

33 / 69



Optimal Mass Transport

kx � yk2 = inf{
R 1
0 kẋ(t)k

2
dt | x(0) = x , x(1) = y}

W2(⇢0, ⇢1)
2 := inf

(⇢,v)
tf

Z
tf

t0

Z

Rn

⇢kvk2dxdt

@⇢

@t
+r · (v⇢) = 0

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y)

W2(⇢0, ⇢1)
2 = inf

Z

time
average kinetic energy

| {z }
action integral

subject to boundary conditions
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Riemannian geometry of OMT
ensemble states {⇢ � 0 :

R
⇢ = 1}

tangent space at ⇢ are perturbations {� :
R
� = 0}

Key insight: � ⌘ @⇢
@t  ! v = r� (irrotational) via solving

� = �r · (⇢r�)
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Riemannian geometry of OMT
ensemble states {⇢ � 0 :

R
⇢ = 1}

tangent space at ⇢ are perturbations {� :
R
� = 0}

Key insight: � ⌘ @⇢
@t  ! v = r� (irrotational) via solving

� = �r · (⇢r�)

Riemannian structure

h�1, �2i⇢ :=

Z
⇢hv1, v2idx

geodesic distance

W2(⇢0, ⇢1) = inf
⇢

Z 1

0

s⌧
@⇢

@t
,
@⇢

@t

�

⇢(t)

dt
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Schrödinger Bridges vs. OMT Bridges
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Bridges vs. Transport
bird’s eye view: stochastic bridges vs. Monge-Kantorovich transport (min distance

2
)

enginee
x8 x8

-suremen · y

· y

spen arex8

green
x8 I

· y ..Enerpaper

· ywereof ... ..! Ix8
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Stochastic bridges
probability laws on paths linking marginals

Brownian diffusion - prior law
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Stochastic bridges
probability laws on paths linking marginals

Brownian diffusion - prior law

Brownian bridge - conditioned at both end-points (pinned bridge)
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Stochastic bridges
probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)

“most-likely” path (most prob. mass in neighborhood)
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Stochastic bridges
probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)

Schrödinger bridge - soft conditioning on one end
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Stochastic bridges
probability laws on paths linking marginals

Schrödinger bridge - soft conditioning on one end

Schrödinger bridge - soft conditioning on both ends

39 / 69



Stochastic bridges vs. optimal transport (deterministic)
Brownian bridge - Conditioned at end-points (Dirac marginals)

Optimal transport - Conditioned at end-points (Dirac marginals)
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Stochastic bridges vs. optimal transport (deterministic)

Schrödinger bridge - soft conditioning at one end-point

Optimal transport - soft conditioned at one end-point
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Stochastic bridges vs. optimal transport (deterministic)
Schrödinger bridge - soft conditioning at two ends

Optimal transport - soft conditioned at two ends
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Some theory on Schrödinger bridges23

2Léonard, C., 2013. A survey of the schrödinger problem and some of its connections with optimal
transport. arXiv preprint arXiv:1308.0215

3Chen, Yongxin, Tryphon T. Georgiou, and Michele Pavon. "On the relation between optimal transport
and Schrödinger bridges: A stochastic control viewpoint." Journal of Optimization Theory and
Applications 169 (2016): 671-691
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Schrödinger bridges - first approach

P? = argmin
nR

paths log
�
dP
dW
�
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

o

i) Disintegration of measures

P(path) = P(path |x(0) = x , x(tf ) = y)| {z }
conditioned = pined bridge

· P0,tf (x , y)

)

Z
log

✓
dP
dW

◆
dP =

Z
log

✓
dP0,tf (x , y)

dW0,tf (x , y)

◆
dP0,tf (x , y)

+

Z
log

✓
dP(path |x(0), x(tf ))
dW(path |x(0), x(tf ))

◆
dP(path |x(0), x(tf ))

| {z }
= 0 for P(path |x(0),x(tf )) = W(path |x(0),x(tf ))
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Structure of the law
via disintegration of measure

P⇤(path)

Schrödinger bridge

= P⇤
0,tf (x , y) ⇥

P(path|x , y)

Pinned bridges

P⇤
0,tf (x , y) : optimal end-point coupling
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Optimal coupling of two end points

min
P0,t

f
(x ,y)

Z
log

✓
dP0,tf (x , y)

dW0,tf (x , y)

◆
dP0,tf (x , y)

P0,tf (x , y) : “couplings"
R
y
P0,tf (x , y) = ⇢0(x)dx = dµ(x)R

x
P0,tf (x , y) = ⇢1(y)dy = d⌫(y)

P⇤
0,tf (x , y) = W0,tf (x , y)a(x)b(y)

where a(x) = e
�left(x), b(y) = e

�right(y) with �’s Lagrange multipliers
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Schrödinger system

Schrödinger (1931/32)

the density factors into
⇢(x , t) = '(x , t)'̂(x , t)

where ' and '̂ solve (Schrödinger’s system):

'(x , t) =

Z
p(t, x , 1, y)'(y , 1)dy , '(x , 0)'̂(x , 0) = ⇢0(x)

'̂(x , t) =

Z
p(0, y , t, x)'̂(y , 0)dy , '(x , 1)'̂(x , 1) = ⇢1(x).
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Schrödinger system

�@'
@t (t, x) =

1
2�'(t, x)

@'̂
@t (t, x) =

1
2�'̂(t, x)

'(0, x)'̂(0, x) = ⇢0(x)
'(1, x)'̂(1, x) = ⇢1(x)

= ⇥
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Schrödinger system
Sinkhorn algorithm redux

4

'̂
�/2�����! '̂

�⇢0
·
�x???

???y
�⇢1

·
�

'
��/2 ������ '

@'
@t (t, x) = �

1
2�'(t, x)

@'̂
@t (t, x) =

1
2�'̂(t, x)

'(0, x)'̂(0, x) = ⇢0(x)

'(1, x)'̂(1, x) = ⇢1(x)
) strictly contractive with respect to dH .

Hilbert metric

dH(p, q) := log
�̄(p, q)
�(p, q)

�̄(p, q) := inf{� | p  �q}
�(p, q) := sup{� | �q  p}

4Chen, Yongxin, Tryphon Georgiou, and Michele Pavon. "Entropic and displacement interpolation: a computational approach using the
Hilbert metric." SIAM Journal on Applied Mathematics 76.6 (2016): 2375-2396.
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Schrödinger bridges - second approach
P? = argmin

nR
paths log

�
dP
dW
�
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

o

ii) Girsanov-Cameron-Martin theorem

The law P of
dXt = v(t,Xt)dt + dBt

and the law of Bt , W, are such that
Z

paths
log

✓
dP
dW

◆
dP =

1
2

Z
kv(t,Xt)k2dP

) minimum kinetic energy paths matching marginals
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Schrödinger bridges - second approach
P? = argmin

nR
paths log

�
dP
dW
�
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

o

Stochastic control formulation

inf
(⇢,v)

Z

Rn

Z
tf

t0

kv(x , t)k2⇢(x , t)dtdx ,

@⇢

@t
+r · (v⇢) = 1

2
�⇢

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

Shift the probability on paths of dXt = dBt , from ⇢0 to ⇢1,
so that it is “concentrated” on paths that correspond to
minimum effort of a controlled diffusion dXt = vdt + dBt .
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Schrödinger bridges - second approach

Fisher-information regularization - time-symmetric/fluid dynamic

inf
(⇢,u)

Z

Rn

Z
tf

t0

✓
ku(x , t)k2 + 1

4
kr log ⇢(x , t)k2

◆
⇢(x , t)dtdx ,

@⇢

@t
+r · (u⇢) = 0

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

u = v � 1
2r log ⇢

Chen, Georgiou, Pavon, 2016, On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint.
J. of Opt. Theory and Appl., 169:671-91

Li, Yin, Osher, 2018. Computations of optimal transport distance with Fisher information regularization. J. of Scientific Comp., 75:1581-95
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Implications - Geometry & Physics

JKO (Jordan-Kinderlehrer-Otto)

gradient flow of entropy
@t⇢ = �rW2S(⇢) = �⇢

OMT quantifies dissipation in over-damped systems

- gradient flows

- convergence to equilibrium

- thermalization

- thermodynamics

.
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OMT as 0-noise limit to SBP & numerics
⇢t +r · ⇢v = ✏�⇢

⇢t + r · ⇢v = ✏�⇢, varying ✏

inf
(⇢,v)

Z

Rn

Z
tf

t0

kv(x , t)k2⇢(x , t)dtdx ,

@⇢
@t

+r · (v⇢) = ✏
2
�⇢

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

or

inf
(⇢,v)

Z

Rn

Z
tf

t0

h
kv(x , t)k2 + k ✏

2
r log ⇢(x , t)k2

i
⇢(x , t)dtdx ,

@⇢
@t

+r · (v⇢) = 0,

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).
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Control applications: active cooling

– thermodynamic systems, controlling collective response
– magnetization distribution in NMR spectroscopy,..

– Nyquist-Johnson noise driven oscillator

LdiL(t) = vC (t)dt

RCdvC (t) = �vC (t)dt � RiL(t)dt + u(t)dt + dw(t)

Chen-Georgiou-Pavon, J. Math. Phys. 2015.
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controlling uncertainty, ensemble control

Inertial particles with stochastic excitation steered between marginals

dx(t) = v(t)dt

dv(t) = �u(t)dt + dw(t)

trajectories in phase space
transparent tube: “3� region”
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Over prior dynamics

Schrödinger bridge with ✏ = 9

Schrödinger bridge with ✏ = 4

Schrödinger bridge with ✏ = 0.01

Optimal transport with prior 55 / 69



Smooth Bridges/Splines - minimize acceleration

– Mass transports along x in C
2 with

R
kẋk2dt <1

Distributional-Spline-Problem:

Find

inf
xti ]P=⇢i

EQ{
Z 1

0
kẍ(t)k2dt}

with Q a probability measure on path space.

when ⇢i ⇠ N (mi ,�i ) ) Semidefinite program
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recap
Schrödinger bridges vs. OMT flows

- minimize cost of transporting between end-point marginals
- minimize cost of traversing paths from beginning to end

SB efficient iterative computation

OMT provides a Riemannian geometry
W2(·, ·) is a geodesic distance
gradient flow of the entropy & the heat equation (JKO)

topics to keep an eye:

- holonomy of transport (internal DoF) - Abdelgalil & G (TAC Nov25, Jan26)
- transport of tracers (Eldesoukey-Abdelgalil-G CDC25)
- transport spatio-temporal constraints (Dong, Eldesoukey)
- minimal attention (Sabbagh etal arXiv just now)
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outlook in the quantum

quantum trajectories

between pre- and post-selected states
Weber, Chantasri, Dressel, Jordan, Murch, Siddiqi
Mapping the optimal route between two quantum states
Nature, 2014, doi:10.1038/nature13559
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Quantum Schrödinger Bridges (QSB)
“The (unauthorized) extrapolation ... into the quantum mechanical domain,”

Otto Bergmann, 1988

Interpolation:

Consider initial/final states |ii, |f i of an observable A (with discrete spectrum)

exp

0

@1
2
⇡
t � t0

t1 � t0
· (|f ihi |+ |iihf || {z }

S

)

1

A |ii = cos(
⇡

2
⌧)|ii+ sin(

⇡

2
⌧)|f i

⌧ = t�t0
t1�t0

For S = |f ihi |+ |iihf |, then exp(↵S) = cos(↵)I + sin(↵)S

Bridge interpolates |iihi | and |f ihf |
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QSB - Bergmann
Restores resemblance with the Brownian bridge, i.e.,

g(t � t0, x � x0)g(t1 � t, x1 � x)

Z

Measuring |ki at t, for evolution U(t) = exp(� i

}Ht),

P
k
|kihk | ·

probabilityz }| {�
|hf |U(t1 � t)|ki|2 · |hk |U(t � t0)|ii|2

�

Zt

• |ii evolves to a mixed state and back to |f i, a decrease in entropy at some point

• the normalization depends on the time t when a projective measurement takes place
normalize by |hf |U(t1 � t0)|ii|2 to restore analogy classical at end-points

• discusses non-selective measurements at t, writes the law in product form
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QSB - Bergmann

Bergmann:

• “Schrödinger’s main interests... statistical mechanics and the interpretation of quantum
mechanics”

• “inspired by the old and almost unknown paper by Schrödinger and no attempt was
made to draw any conclusions about its impact, if any, on the theory of measurements. It
was written primarily as a historical study”

• “a referee .. informed the author [Bergmann] of”
– Y. Aharonov, P.G. Bergmann and J.L. Lebowitz
– F.J. Belinfante
“contributions to the same problem .. written without Schrödinger’s inspiration”

61 / 69



Two-state vector formalism5

• pre- and post- selected quantum systems
• a time-symmetric description of QM in which

the present is caused by states

h 1| · | 0i,

evolving backwards from the future (h 1|)
and forward from the past (| 0i)

• time-symmetry by construction

Figure: Watanabe and his son, 1949

5Watanabe, S. (1955). Symmetry of physical laws. Part III. Prediction and retrodiction.
Reviews of Modern Physics, 27(2), 179.
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Two-state vector formalism6

• “indubitable asymmetry in time direction” is not due to the principles of QM but from
the intrusion of the macroscopic world

Y. Aharonov
P. Bergmann
(1915–2002)

J. Lebowitz

6Aharonov, Y., Bergmann, P. G., and Lebowitz, J. L. (1964). Time symmetry in the quantum process
of measurement. Physical Review, 134(6B), B1410.
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Measurements and time-reversal7

- prediction vs postdiction: apparent asymmetry
- Belifante extends to non-ideal measurement processes

Frederik Jozel
Belinfante
(1913–1991)

7Belinfante, F.J. (1975). Measurements and Time Reversal in Objective Quantum Theory:
International Series in Natural Philosophy (Vol. 75)
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pre/post-selection - link to large deviations8

• fix two bases | i

0i and | j

1i
• assistant prepares ensembles and reports

pre/post-selected marginals
Olga Movilla Miangolarra
Universidad de La Laguna, Spain

Bridge problem: What is the most likely coupling of initial and final outcomes?

8Quantum Schrödinger bridges: large deviations and time-symmetric ensembles, Olga et al., PRR
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pre/post-selection
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intervening measurements
Statistics, path probabilities

Schrödinger bridge Pinned bridges

quantum trajectories of Weber etal.
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recap & discussion
Schrödinger Bridges: interpolation of probability laws

uncertainty control, stochastic control

diffusion models in ML

quantum SBs & the time arrow in physics
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thank you for your attention
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