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Schrédinger Bridges - background & classical concepts

Entropy & Relative entropy
manifestations

Schrédinger’s Bridge problem
static & dynamic
Markov chains, diffusion processes

Fortet-Sinkhorn algorithm
Hilbert metric

Stochastic control & steering

A bit on quantum
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Relative Entropy

Kullback-Leibler divergence

P, Q probability laws on any measurable space X' (dQ > dP),

D(PQ) i~ | dPlog (j,g)
dP

=Eqg {Alog(A)}, where A = a0

If dQ % dP, then D(P||Q) := ¢

D(P||Q) jointly convex, and > 0 always
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Relative Entropy

origins

¢ degradation of coding efficiency:
word-length increase on average when using the wrong code

Average word-length (optimal code) = — >, px log(pk), i.e., entropy rate
Average word-length using code designed for ~ qi, — >, pklog(qx)
Degradation:

—Zpkbg k) Zpk log(pk)) = D(P| Q)

suboptimal optimal
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Relative Entropy

e quantifying likelihood of rare events:
the probability that an empirical average is far away from its mean

Sanov’s theorem:
Independent samples X; (t € {1,...,N}), distributed X; ~ Q

Random Histogram

Empirical distribution Py (random histogram)
Pru(A) = 4 2t Ixen

Suppose P is a convex set of distributions,
and P* = arg minpcp D(P||Q)

P{Py € P} =~ e NVD(FIIQ)

P* representative of Py in “neighborhood” P 6/60



Relative Entropy

o likelihood estimation:
most likely law consistent with statistics/moments

example: Assuming, e.g., X € {0,...,n} is distributed X ~ @ (prior)
and given estimated statistics/moments, e.g., X = % EQ’ZI X

what can we say about the distribution of the N-samples?

The most likely (posterior) is:

P* = ar min  D(P||Q
£ min _D(P|Q)

i.e., the closest to the prior that is consistent with the data
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Relative Entropy

e Reconcile statistical data
origin in statistics, contigency tables

Example:

X, Y jointly distributed on {0,1,..., n}, with prior Q(x,y),
and given (empirical) marginals px(x), py(y),

find a most likely posterior P*(x, y) in agreement with px, py.

P = argmlin {]D)(PQ) | ZP(X#) = py(y), ZP(XJ) = PX(X)}

8/69



Form of solution - diagonal scaling!
P = argming {D(P|Q) | £, P(x,¥) = py(y), X, P(x,y) = px(x)}

L(P,a,b):=) > P(x,y)log (ggig)
+ > a(x)>_ P(x,y) — px(x))
+> b Ply) = pr(y)

d _ P(xy)\ —
spegy L =0 = log (GE) = —1+ a(x) + b(y)

P*(x,y) = e ) Q(x, y)e?¥)

1Sinkhorn-Knopp, Marshall & Olkin, and earlier Schrédinger, Fortet
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Fortet-Sinkhorn’s algorithm
P*(x,y) = e X Q(x, y)e®™) = Diete(x) Q(x, ¥) Drigne (v)

Algorithm: Given matrix Q, and vectors px, py

Start with P = Q = [Q(x, )]} 1

P — D;P where D, diagonal, Dy(x) = Zp’;j(();) ™)

P — PD, where D, diagonal, D;(y) = /%

repeat until convergence

If Q(x,y) > 0 for all x,y convergence is guaranteed.
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Schrodinger’s bridge problem

for Markov chains

Markov chain X; € {0, ..., n}

Prior law: X ~ qo, transition probabilities Mo (xo, x1), M1 (x1, x2), - ., Mr—1(x7—1, xT).
Data: empirical marginals Xy ~ po, X7 ~ pT1

Find the most likely evolution

Path probability/measure:
Prior path probability Q(x0, -, xT) = qo(x0)
X0

do (X0, x1) - Mr—1(x7—-1, xT)
Posterior path probability P(xg,...,x7) = po(xo)

Mo
Mo(x0,x1) - - Mr_1(x7-1,x7)

Find: transition probabilities
P* = arg min {]D)(PHQ) | Z P(x1,...,x7) = po(x0),

X1 yeen XT
Z P(x0, ..., x7-1) = pT(XT).

X0+, XT—1
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P* = argmin{D(P||Q) | P € P(po,pT)}

Disintegration: Q with respect to the initial and final positions,

Q(x0, X1, -+, XT) = Quoxr (X1, -+ -, xT-1) G0 (X0, XT)

pinned bridge

where Q x(+) = Q{ - |X(0) = x0, X(T) = x7}; similarly for P

D(PIQ) = 3 por(xo.xr) log PTOXT) = p ( yjog Posxrl) i )

A o 90T
XOXT qOT(XO)XT) x QXo,XT(X..,)

=0 >0

= 2nd term = 0 when P, Q share pinned bridges
= need to minimize the coupling pgT subject to marginals
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P* = argmin{D(P||Q) | P € P(po,pT)}

For T=1

po1(xo, x1)

[* = argmin po1(xo, x1) log
{2 poa ) qo1(xo0, x1)

X0X1

po1(x0, x1) = p(x0)[1(x0, 1), Go1(x0, x1) = q(x0)M(x0, x1),

D(po()(-, )|l go()N(:, ) = Z p(x0)1(x0, x1) <|0g(P(X0)) + Iog(ﬁiﬁiﬁi))

X0,X1 q(XO)

transition probability: > M(xp,x1) =1
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P* = argmin{D(P||Q) | P € P(po,pT)}

A* = argmin {Z ploo) 10 20) 0B 222 | 35 o)1) = o)

X0,X1
Z ﬁ(Xo,Xl) = 1}
X1

A

M*(x0, x1) = left(xo)M(xo, x1 )right(x)
= do(x0) " M(x0, x1)h1(x1)
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A brief interlude on the Hilbert metric
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The Hilbert projective metric

Pappus of Alexandria - cross ratio

Convex bounded Q2 Cc R”

For B, C € Q and A, D points of intersect of AB line with boundary of Q

BA| - |CD
dH(A, B) = IOg (W) o
0
=0
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The Hilbert projective metric

Convex cone K C Banach space

e Pointed: KN (—K) = {0} Xp,q) = inf{\|p<)\q}
e Partialorder p> g p—qge K A(p, 9) sup{\ | A\q < p}

du(p,q) := log ;Eg’ Z;

Examples:
positive cone in R
positive definite Hermitian matrices

Hilbert 1895
Birkhoff 1957
Bushell 1973
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The Hilbert projective metric

Projective diameter: diam(range(M)) := sup {dy(MN(x),N(y)) | x,y € K\{0}}
Contraction ratio: |||y = inf {\ | dy(M(x),M(y)) < Adu(x,y), x,y € K\{0}}

Birkhoff-Bushell theorem

I positive, monotone, homogeneous of degree m, i.e., N : K— K, coneinR"
x <y =T(x) <N(y)
M(ax) = a™MN(x)

Then ||N||y < m, and if, in addition, I is linear:

1
1Ny = tanh(Zdiam(I'l))
Corollary: If linear N : K — interior(K), then M|y < 1
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Bridge for one-step Markov Chain

Start with a stochastic matrix (row sum = 1):
Nn= [|_|X0,XT]X0 xy—1» With positive entries

& two probability vectors pg, py with strictly positive entries

Schrodinger system
There exist ¢(0, x0), ¢(T,x7), #(0,x0), &(T,x7), X0, xT € {1,..., N} such that:

¢(07 XO) - Z I_IX07XT¢( T7 XT)
NT,xt) = > My (0, 0)

0,x0) = po(x0)

(0, x0)9(0
NT,xr) = pr(xr)

d)(TaXT)
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Bridge for one-step Markov Chain

Circular composition of maps:

50.0) T HToxr) =3, Mo 30, 30)

— (xo0) _ prixT)
$(0,0) = £ T + $(T,xr) = FET)

Sy Moy ®(Tox7) = 6(0,%0) +—  ¢(T,xr)

The composition

30, %) 5 B(T,xr) 25 $(T,xr) - 6(0,30) 2% (3(0, %))

next

is contractive in the Hilbert metric

po(xo) 2 _ pr(xw)
¢(O,X0) and Dr qﬁ(T, XT) — qﬁ(T, XT) = &(T’XT)

Do : ¢(0,X0) = (3(07 Xo) =
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Bridge for one-step Markov Chain

e the ranges of M7, are strictly in the interior of the cone,
Il AT < 1.

e Dy and Dt inversion/element-wise scaling are isometries in the Hilbert metric

The Schrédinger system has a solution (unique up to scaling)
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inversion/element-wise scaling = isometries

og ((maxts ) 0 )
max(() /(1))

du([x], [vi])

o8 (minf((x;rl/(yf)fl)
an([()~1 10 )

max;((pixi)/(piyi))
o8 min;((pixi)/(piyi))
— tog TR _ (1), ).

du([pixi], [Piyi])
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P* = argmin{D(P||Q) | P € P(po,pT)}

ﬁ(xo, XT

[1* = argmin {Z p(x0)M(x0, xT) |0g(|-|( ) | ZPO x0)1(x0, x7) = pr(xT)

X0,X1
Z ﬁ(Xo, XT) = 1}
X1

% (x0, x7) = left(xo)M(x0, x7)right(x7)
= ¢o(x0) " M(x0, x7)7(xT)
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Schrodinger’s bridge

for Markov chains

Markov chain X; € {0,...,n}

Prior law: X ~ qo, transition probabilities Mo (xo, x1), M1 (x1,x2), - ., Mr_1(x7_1, xT).
Data: empirical marginals Xy ~ po, X7 ~ pT1

Find the most likely evolution

Prior path probability Q(XQ, o 7XT) = QQ(Xo)H()(Xo, Xl) <o |_|T_1(XT_17 XT)
Posterior path probability P*(xp,...,x7) = po(x0)Mo(x0,x1) - - - My_1(x7-1, XT)

Flo(xo0,x1)
P*(x0, - -, x1) = po(x0) (#(0, x0) " Mo(x0, x1)(1,x1)) (6(1,x1) ' M1(xa, x2) (2, x2)) - - -
. (¢(T _ ]_7 XTfl)*ll'IT,l(qu, XT)Q/)(T7 XT))
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Schrodinger Bridges in earnest

“On the reversal of the laws of nature”
Erwin Schrédinger, 1931
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Schrodinger’s bridge problem

— Consider a cloud of N independent Brownian particles (N large) 3
— empirical distributions po(x) and pi(y) att=0and t =1 }4
— po and p1 not compatible with transition mechanism

1
nly) # /0 (0, %, t1, ¥)po(x)dx,

where
1 _1lx—yl?

W(t07y7 tl,X) = (27’[’)"(t : )e 2htto . s<t
1— 1o

= Particles have been transported in an unlikely way

Schrédinger (1931)
Of the many possible (unlikely) ways, which one is the most likely?
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Bridge

Probability law on paths linking two end-point marginals

Velocity v
o
% s

0.5

Position x 50 Time ¢
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Bridge

Probability law on paths linking two end-point marginals

Velocity v

o

/

{

adn

0

Position x

-5

0

0.5

Time ¢

Schrddinger’s problem:

e Interpolate in a way that reconciles
the two marginals with the prior law

e The new law being the most likely
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marginal distribution at t =0

o
(N
J

Density p
o

G 1 -10 Position x o /65



marginal and prior law (flow of one-time densities)

Density p

-10 Position x 2660



initial marginal, prior law, and end-point marginal

Density p

1 -10 Position x 2560

Time t



Schrédinger bridge

Density p
o

10

0

Time t 1 -10 Position z 28/69



Follmer (1988):

Schrédinger’s problem concerns large deviation of the empirical measure on paths

via Sanov's theorem

Prob(empirical P|;—g = po, Pi=1 = p1) ~ e N [ 1og( 57 )P

sampled from the Wiener W : “prior”

Schrédinger 'sproblem

. dP
P* = argmin {/ log <m) dP | Pli=o = po, Pr=1 = pl}
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An brief interlude on Optimal Mass Transport
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Optimal Mass Transport

Le mémoire sur les déblais et les remblais
Gaspard Monge 1781

g
7 v
Wasserstein metric
Wa(p, v = inf [ x= T(|Pdu(x)
where T#p =v p(dx) = podx, v(dx) = p1dx

oi(x) = — L o (T-1(x))
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Optimal Mass Transport

Walpvf = _inf ey dntey)
7€M (po,p1)

M(, v) @ “couplings"

J, m(dx, dy) = po(x)dx = dp(x)
[ m(dx,dy) = pi(y)dy = dv(y)
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Optimal Mass Transport

Walpvf = _inf ey dntey)
7€M (po,p1)

M(, v) @ “couplings"

J, m(dx, dy) = po(x)dx = dp(x)
[ m(dx,dy) = pi(y)dy = dv(y)

T v ()i
_r .
: Y
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Optimal Mass Transport

Ix =y =

inf{ [ [x(t)[[2dt | x(0) = x, x(1) = y}

W2(p07 P1)2 =

Wa(po, p1)? =

tf
inf tf/ / pllv|?dxdt
to R”

80
aJrV( p)=0

p(x, to) = po(x), py,tr) = p1(y)

inf average kinetic energy
time

action integral
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Riemannian geometry of OMT

ensemble states {p>0:[p=1}
tangent space at p are perturbations {§: [ 6 =0}

Key insight: 0= % +— v = V¢ (irrotational) via solving

6==V-(pVo)
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Riemannian geometry of OMT

ensemble states {p>0:[p=1}
tangent space at p are perturbations {§: [ 6 =0}
Key insight: 0= % +— v = V¢ (irrotational) via solving
6=—=V-(pVo)

Riemannian structure

(01,02)p = /p(vl, va)dx

geodesic distance

(Y [/op op
Wz(po,p]_) = Ir;f/o <at, 8t>p(t)dt
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Schrédinger Bridges vs. OMT Bridges
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Bridges vs. Transport

bird’s eye view: stochastic bridges vs. Monge-Kantorovich transport (min distance?)




Stochastic bridges

probability laws on paths linking marginals

Brownian diffusion - prior law
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Stochastic bridges

probability laws on paths linking marginals

Brownian diffusion - prior law
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Stochastic bridges

probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)
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Stochastic bridges

probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)
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Stochastic bridges

probability laws on paths linking marginals

Schrédinger bridge - soft conditioning on one end
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Stochastic bridges vs. optimal transport (deterministic)

Brownian bridge - Conditioned at end-points (Dirac marginals)
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Stochastic bridges vs. optimal transport (deterministic)

Schrdédinger bridge - soft conditioning at one end-point

Optimal transport - soft conditioned at one end-point
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Stochastic bridges vs. optimal transport (deterministic)

Schrdédinger bridge - soft conditioning at two ends
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Some theory on Schrédinger bridges?3

2Léonard, C., 2013. A survey of the schrédinger problem and some of its connections with optimal
transport. arXiv preprint arXiv:1308.0215

3Chen, Yongxin, Tryphon T. Georgiou, and Michele Pavon. "On the relation between optimal transport
and Schrodinger bridges: A stochastic control viewpoint." Journal of Optimization Theory and

Applications 169 (2016): 671-691
41/69



Schrodinger bridges - first approach

P* = argmin {fp&thb |og( ) dP | Pli—o = po, Pr=1 = Pl}

i) Disintegration of measures

P(path) = P(path [x(0) = x, x(tr) = y) - Po,,(x,y)

conditioned = pined bridge

dP dPo.c, (x,y)
| — | dP = [ | — VI ) P
/ °g<dW> / °g(dwo,tf(x,y) 0% )

dP(path |x(0), x(tf))
+ / log (dW(path X(O),x(tf))) dP(path |x(0), x(tr))

=0 for P(path |x(0),x(tr)) = W(path |x(0),x(tf))
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Structure of the law

via disintegration of measure

P*(path)

Schroédinger bridge Pinned bridges

P+, (x,y) : optimal end-point coupling
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Optimal coupling of two end points

. d]P)O t (x’y) )
min log [ =2tV 7)) gy, (x,
]P’O,tf(X,y)/ g (dWOytf(X,y) O,tf( y)

Po.¢(x,y) : “couplings"

J, Po,e:(x, ) = po(x)dx = dyu(x) p
L Po,t:(x,y) = pr(y)dy = dv(y) : X
y $iel
v
Patf(xay) - WO,tf(Xv)/)a(X)b(y)
)
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Schrodinger system

Schrédinger (1931/32)
the density factors into
p(x, t) = o(x, t)@(x, t)

where ¢ and @ solve (Schrédinger's system):
px,t) = [ plexLy)oly, Ddy, o(x.009(x,0) = po(x)

Blx, 1) = / p(0,y, £, X)B(y, 0)dy, o(x, 1)p(x, 1) = pa ().
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Schrodinger system

.; a
;:M =" % _%(ta X) = %ASD(taX)
oo Wl Ge(t.x) = 30¢(t, %)
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Schrodinger system

Sinkhorn algorithm redux*

2 A2 2 et 2
’ ¢ N
37 (t,x) = 380(t, x)
(] | @)
N ©(0,x)$(0, x) = po(x)
T (1, )$(L,x) = p1(x)
= strictly contractive with respect to dy.
A(p, )
du(p,q) =1
A(p,q) = inf{A|p<Aq}

A(p, q) sup{A | Aq < p}

Chen, Yongxin, Tryphon Georgiou, and Michele Pavon. "Entropic and displacement interpolation: a computational approach using the
47 / 69
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Schrodinger bridges - second approach
P* = argmin {fpaths log (%) dP | Pli=o = po, Pi=1 = Pl}

ii) Girsanov-Cameron-Martin theorem

The law P of
dXt = V(t7 Xt)dt + dBt

and the law of B;, W, are such that
dP 1
log ( o ) AP =5 [ llv(t, Xo)[*dP
/paths Og(dW> 2/”‘/( , Xt

= minimum kinetic energy paths matching marginals
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Schrodinger bridges - second approach
P* = argmin {fpathS |og( ) dP | Pli—o = po, Pt=1 = Pl}

Stochastic control formulation

mf/ / Iv(x, £)||2p(x, t)dtdx,

1
V. —A
at L1V (vp) = A0
p(x, to) = po(x), ply,tr) = p1(y)-
Shift the probability on paths of dX; = dB;, from pg to p1,

so that it is “concentrated” on paths that correspond to
minimum effort of a controlled diffusion dX; = vdt + dB:.
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Schrodinger bridges - second approach

Fisher-information regularization - time-symmetric/fluid dynamic

tr 1
ot [ (|ru(x,t>||2+HV|ogp(x7r>u2)p(x,r)dtdx,
R Jtg 4

(psu)

dp .
E—FV-(up)—O

p(x, to) = po(x), plytr) = p1(y)-

u:vf%Tlog/»

Chen, Georgiou, Pavon, 2016, On the relation between optimal transport and Schrddinger bridges: A stochastic control viewpoint
J. of Opt. Theory and Appl., 169:671-91

Li, Yin, Osher, 2018. Computations of optimal transport distance with Fisher information regularization. J. of Scientific Comp., 75:1581-95
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Implications - Geometry & Physics

JKO (Jordan-Kinderlehrer-Otto)

gradient flow of entropy
dep=—-V"2S(p) = Ap

OMT quantifies dissipation in over-damped systems

- gradient flows

- convergence to equilibrium
- thermalization

- thermodynamics

51/69



OMT as 0-noise limit to SBP & numerics
pe + V- pv=elp

tr
inf/ / lv(x, t)]*p(x, t)dtdx,
(psv) R Jto

ap €
ﬁ‘f‘v'(VP)—EAP

p(x,t0) = po(x), p(y,tr) = pr(y).

inf /
(p,v) Jrn

dp _

p(x; to) = po(x),  p(y, tr) = p1(y)-

or

tr €
[ 017 + 155 tog plx, 0] o, ),

to

52 /69



Control applications: active cooling

— thermodynamic systems, controlling collective response
— magnetization distribution in NMR spectroscopy,..

— Nyquist-Johnson noise driven oscillator

Ldif(t) =  ve(t)dt
RCdvc(t) = —vc(t)dt — Rig(t)dt + u(t)dt + dw(t)
e of o i
i iy S
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controlling uncertainty, ensemble control

Inertial particles with stochastic excitation steered between marginals

dx(t) = v(t)dt
dv(t) = —u(t)dt+ dw(t)

) s
3
o 1
05
Padkicn 50 Titse £ .
;‘ﬁi.iw

“
2 : a

s 85 e trajectories in phase space
transparent tube: “3c region”
54 /69



Over prior dynamics

S & o o

Schrédinger bridge with e =9

10
5
&0 %
5 :
-10
10 L
0 05
10 0 Titme

Schrodinger bridge with e = 4

S5 & o w

Schrodinger bridge with e = 0.01

S5 & o o

Optimal transport with prior
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Smooth Bridges/Splines - minimize acceleration

— Mass transports along x in C2 with [ [|x|2dt < oo

Distributional-Spline-Problem:

Find )

inf Eof [ K9]t}
0

xt; {P=pi
with Q a probability measure on path space.

when p; ~ N(mj, ;) = Semidefinite program
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recap

Schrédinger bridges vs. OMT flows

- minimize cost of transporting between end-point marginals
- minimize cost of traversing paths from beginning to end

SB efficient iterative computation

OMT provides a Riemannian geometry
Wh(-,-) is a geodesic distance
gradient flow of the entropy & the heat equation (JKO)

topics to keep an eye:

- holonomy of transport (internal DoF) - Abdelgalil & G (TAC Nov25, Jan26)
- transport of tracers (Eldesoukey-Abdelgalil-G CDC25)

- transport spatio-temporal constraints (Dong, Eldesoukey)

- minimal attention (Sabbagh etal arXiv just now)
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outlook in the quantum

0.0 0.5 1.0
Time (us)

quantum trajectories
between pre- and post-selected states

‘Weber, Chantasri, Dressel, Jordan, Murch, Siddiqi
Mapping the optimal route between two quantum states
Nature, 2014, doi:10.1038 /naturel13559
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Quantum Schrédinger Bridges (QSB)

“The (unauthorized) extrapolation ... into the quantum mechanical domain,”

Otto Bergmann, 1988

Interpolation:

Consider initial/final states |/), |f) of an observable A (with discrete spectrum)

1 t—t . . . ) .
exp [ Sm——2 - (IF)(i| + |)(F]) | i) = cos(=7)|i) +sin(=7)|F)
2 -ty ————— 2 2
S
rE étf%

For S = |f)(i| + |i)(f], then exp(aS) = cos(a)! + sin(c)S
Bridge interpolates |/)(i| and |f)(f]
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QSB - Bergmann

Restores resemblance with the Brownian bridge, i.e.,

g(t - t0>X _XO)g(tl - t>Xl - X)
V4
Measuring |k) at t, for evolution U(t) = exp(—£Ht),

probability

> k) (K| - (IKF1 Ut = )] k) - [k UCE = to)]i)?)
Zy

e |i) evolves to a mixed state and back to |f), a decrease in entropy at some point

e the normalization depends on the time t when a projective measurement takes place
normalize by [{(f|U(t1 — to)|i}|? to restore analogy classical at end-points

e discusses non-selective measurements at t, writes the law in product form
60/ 69



QSB - Bergmann

Bergmann:

e “Schrodinger’'s main interests... statistical mechanics and the interpretation of quantum
mechanics”

e “inspired by the old and almost unknown paper by Schrédinger and no attempt was
made to draw any conclusions about its impact, if any, on the theory of measurements. It
was written primarily as a historical study”

e “a referee .. informed the author [Bergmann]| of”

— Y. Aharonov, P.G. Bergmann and J.L. Lebowitz

— F.J. Belinfante

“contributions to the same problem .. written without Schrédinger's inspiration”
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Two-state vector formalism?®

® pre- and post- selected quantum systems

® 3 time-symmetric description of QM in which
the present is caused by states

<¢1| ’ |¢0>7

evolving backwards from the future ((¢1])
and forward from the past (|1o))

® time-symmetry by construction

Figure: Watanabe and his son, 1949

5Watanabe, S. (1955). Symmetry of physical laws. Part IIl. Prediction and retrodiction.

Reviews of Modern Physics, 27(2), 179.
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Two-state vector formalism®

e “indubitable asymmetry in time direction” is not due to the principles of QM but from
the intrusion of the macroscopic world

P. Bergmann J. Lebowitz
Y. Aharonov (1915-2002)

5Aharonov, Y., Bergmann, P. G., and Lebowitz, J. L. (1964). Time symmetry in the quantum process

of measurement. Physical Review, 134(6B), B1410.
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Measurements and time-reversal’

- prediction vs postdiction: apparent asymmetry

- Belifante extends to non-ideal measurement processes

Frederik Jozel
Belinfante
(1913-1991)

"Belinfante, F.J. (1975). Measurements and Time Reversal in Objective Quantum Theory:
International Series in Natural Philosophy (Vol. 75)
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pre/post-selection - link to large deviations®

® fix two bases |¢}) and Wj1>

® assistant prepares ensembles and reports
pre/post-selected marginals

Olga Movilla Miangolarra
Universidad de La Laguna, Spain

Bridge problem: What is the most likely coupling of initial and final outcomes?

8Quantum Schrddinger bridges: large deviations and time-symmetric ensembles, Olga et al., PRR
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pre/post-selection

n realizations performed by the assistant

reported initial state re-select post-select reported final state

po =D dilah)(xh| 11“ § Lij (- — |3) pr=_ Bilyl) (il

i ]

£ po £ m

66 /69



intervening measurements
Statistics, path probabilities

Schrédinger bridge Pinned bridges o0 o.sTime(us)mo

quantum trajectories of Weber etal.
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recap & discussion

Schrédinger Bridges: interpolation of probability laws
uncertainty control, stochastic control
diffusion models in ML

quantum SBs & the time arrow in physics

lmm institute for pure & applied mathematics

Non-commutative Optimal
Transport

March 10 - June 13, 2025

iwm Ralph Sabbagh - On the Weyl

symbols of Gaussian semigro.
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thank you for your attention
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